3,192 research outputs found

    (De)Constructing Dimensions

    Get PDF
    We construct renormalizable, asymptotically free, four dimensional gauge theories that dynamically generate a fifth dimension.Comment: 10 pages, late

    Fully Point-wise Convolutional Neural Network for Modeling Statistical Regularities in Natural Images

    Full text link
    Modeling statistical regularity plays an essential role in ill-posed image processing problems. Recently, deep learning based methods have been presented to implicitly learn statistical representation of pixel distributions in natural images and leverage it as a constraint to facilitate subsequent tasks, such as color constancy and image dehazing. However, the existing CNN architecture is prone to variability and diversity of pixel intensity within and between local regions, which may result in inaccurate statistical representation. To address this problem, this paper presents a novel fully point-wise CNN architecture for modeling statistical regularities in natural images. Specifically, we propose to randomly shuffle the pixels in the origin images and leverage the shuffled image as input to make CNN more concerned with the statistical properties. Moreover, since the pixels in the shuffled image are independent identically distributed, we can replace all the large convolution kernels in CNN with point-wise (1∗11*1) convolution kernels while maintaining the representation ability. Experimental results on two applications: color constancy and image dehazing, demonstrate the superiority of our proposed network over the existing architectures, i.e., using 1/10∌\sim1/100 network parameters and computational cost while achieving comparable performance.Comment: 9 pages, 7 figures. To appear in ACM MM 201

    Anomalies on Orbifolds

    Get PDF
    We discuss the form of the chiral anomaly on an S1/Z2 orbifold with chiral boundary conditions. We find that the 4-divergence of the higher-dimensional current evaluated at a given point in the extra dimension is proportional to the probability of finding the chiral zero mode there. Nevertheless the anomaly, appropriately defined as the five dimensional divergence of the current, lives entirely on the orbifold fixed planes and is independent of the shape of the zero mode. Therefore long distance four dimensional anomaly cancellation ensures the consistency of the higher dimensional orbifold theory.Comment: 11 pages, latex, no figure

    Twisted supersymmetry and the topology of theory space

    Get PDF
    We present examples of four dimensional, non-supersymmetric field theories in which ultraviolet supersymmetry breaking effects, such as bose-fermi splittings and the vacuum energy, are suppressed by (α/4π)N(\alpha/4 \pi)^{N}, where α\alpha is a weak coupling factor and NN can be made arbitrarily large. The particle content and interactions of these models are conveniently represented by a graph with sites and links, describing the gauge theory space structure. While the theories are supersymmetric ``locally'' in theory space, supersymmetry can be explicitly broken by topological obstructions.Comment: 9 pages, revtex

    Recent Decisions

    Get PDF
    Comments on recent decisions by Joseph C. Spalding, R. Emmett Fitzgerald, Howard G. Burke, Andrew V. Giorgi, Richard F. Welter, Edward L. Burke, Frank A. Howard, Robert C. Enburg, Carl F. Eiberger, William L. Kirchner, Jr., and William J. Hurley

    Atmospheric Characterization of the Hot Jupiter Kepler-13Ab

    Get PDF
    Kepler-13Ab (= KOI-13.01) is a unique transiting hot Jupiter. It is one of very few known short-period planets orbiting a hot A-type star, making it one of the hottest planets currently known. The availability of Kepler data allows us to measure the planet's occultation (secondary eclipse) and phase curve in the optical, which we combine with occultations observed by warm Spitzer at 4.5 mic and 3.6 mic and a ground-based occultation observation in the Ks band (2.1 mic). We derive a day-side hemisphere temperature of 2,750 +- 160 K as the effective temperature of a black body showing the same occultation depths. Comparing the occultation depths with one-dimensional planetary atmosphere models suggests the presence of an atmospheric temperature inversion. Our analysis shows evidence for a relatively high geometric albedo, Ag= 0.33 +0.04 -0.06. While measured with a simplistic method, a high Ag is supported also by the fact that the one-dimensional atmosphere models underestimate the occultation depth in the optical. We use stellar spectra to determine the dilution, in the four wide bands where occultation was measured, due to the visual stellar binary companion 1.15 +- 0.05" away. The revised stellar parameters measured using these spectra are combined with other measurements leading to revised planetary mass and radius estimates of Mp = 4.94 - 8.09 Mjup and Rp = 1.406 +- 0.038 Rjup. Finally, we measure a Kepler mid-occultation time that is 34.0 +- 6.9 s earlier than expected based on the mid-transit time and the delay due to light travel time, and discuss possible scenarios.Comment: V2: Accepted to ApJ on 2014 April 11. Spitzer photometry and model fitting Matlab pipeline code is publicly available at: http://gps.caltech.edu/~shporer/spitzerphot

    Infrared Lightcurves of Near Earth Objects

    Get PDF
    We present lightcurves and derive periods and amplitudes for a subset of 38 near earth objects (NEOs) observed at 4.5 microns with the IRAC camera on the the Spitzer Space Telescope, many of them having no previously reported rotation periods. This subset was chosen from about 1800 IRAC NEO observations as having obvious periodicity and significant amplitude. For objects where the period observed did not sample the full rotational period, we derived lower limits to these parameters based on sinusoidal fits. Lightcurve durations ranged from 42 to 544 minutes, with derived periods from 16 to 400 minutes. We discuss the effects of lightcurve variations on the thermal modeling used to derive diameters and albedos from Spitzer photometry. We find that both diameters and albedos derived from the lightcurve maxima and minima agree with our previously published results, even for extreme objects, showing the conservative nature of the thermal model uncertainties. We also evaluate the NEO rotation rates, sizes, and their cohesive strengths.Comment: 16 pages, 4 figures, 3 tables, to appear in the Astrophysical Journal Supplement Serie

    PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication

    Get PDF
    DNA damage can stall the DNA replication machinery, leading to genomic instability. Thus, numerous mechanisms exist to complete genome duplication in the absence of a pristine DNA template, but identification of the enzymes involved remains incomplete. Here, we establish that Primase-Polymerase (PrimPol; CCDC111), an archaeal-eukaryotic primase (AEP) in eukaryotic cells, is involved in chromosomal DNA replication. PrimPol is required for replication fork progression on ultraviolet (UV) lightdamaged DNA templates, possibly mediated by its ability to catalyze translesion synthesis (TLS) of these lesions. This PrimPol UV lesion bypass pathway is not epistatic with the Pol h-dependent pathway and, as a consequence, protects xeroderma pigmentosum variant (XP-V) patient cells from UV-induced cytotoxicity. In addition, we establish that PrimPol is also required for efficient replication fork progression during an unperturbed S phase. These and other findings indicate that PrimPol is an important player in replication fork progression in eukaryotic cells
    • 

    corecore